Feedback Stabilization of a Boundary Layer Equation Part 1 : Homogeneous State Equations

نویسندگان

  • Jean-Marie Buchot
  • Jean-Pierre Raymond
چکیده

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminarto-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence results in the literature of solutions to algebraic Riccati equations do not apply to this class of problems. Here taking advantage of the fact that the semigroup of the state equation is exponentially stable and that the observation operator is a Hilbert-Schmidt operator, we are able to prove the existence and uniqueness of solution to the A.R.E. satisfied by the kernel of the operator which associates the ‘optimal adjoint state’ with the ‘optimal state’. In part 2 [Buchot and Raymond, Appl. Math. Res. eXpress (2010) doi:10.1093/amrx/abp007], we study problems in which the feedback law is determined by the solution to the A.R.E. and another nonhomogeneous term satisfying an evolution equation involving nonhomogeneous perturbations of the state equation, and a nonhomogeneous term in the cost functional. Mathematics Subject Classification. 93B52, 93C20, 76D55, 35K65. Received March 25, 2009. Revised November 2nd, 2009. Published online April 23, 2010.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures

We consider the problem of boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures that are governed by unstable linear reaction-convection-diffusion equations. We extend boundary feedback control laws designed for the one-dimensional reaction-diffusion equation using the backstepping method to this higher-dimensional case. We show that, under certain mathematical c...

متن کامل

Analytical and Numerical Study on the Buckling of Homogeneous Beams Coated by a Functionally Graded Porous Layer with Different Boundary Conditions

In this paper, static buckling of homogeneous beams coated by a functionally graded porous layer with different boundary conditions is investigated based on the Timoshenko beam theory. The principle of virtual work has been used to obtain the governing equations. Two different methods, namely analyticalsolution and numerical solution are used to solve the governing equations and extract the buc...

متن کامل

Boundary Feedback Stabilization of a Nonlinear Flexible Gantry Manipulator Using Disturbance Observer

This paper aims to develop a boundary control solution for a single-link gantry robot manipulator with one axis of rotation. The control procedure is considered with link’s transverse vibrations while system undergoes rigid body nonlinear large rotation and translation. Initially, based on Hamilton principle, governing equations of hybrid motions as a set of partial differential equations...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Nvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition

Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011